Девушку-подростка сбили на пешеходном переходе в Улан-Удэ
12:42
Эксперты обсудили конвергенцию технологий и вызовы машинного обучения на AI Journey
12:40
В Бурятии объяснили, как пожаловаться на владельцев безнадзорных собак
12:30
В спорах вокруг Байкала сошлись экс-губернатор Прибайкалья и глава Бурятии
11:59
AIJ Science 2025: Российские учёные награждены за статью о новом методе обработки данных
11:50
В Улан-Удэ подросток обокрал женщину в сауне во время совместного отдыха
11:45
AI Journey Contest 2025: подведены итоги соревнований в области генеративного ИИ
11:40
Бурятия вошла в топ регионов с наиболее быстрорастущим туристическим спросом
11:33
В Бурятии задержали подозреваемого в краже фамильной драгоценности
11:20
Житель Бурятии купил у браконьеров омуль и пошел под суд
11:00
Пожар на складе в Улан-Удэ тушили ночью
10:34
Учеников в Бурятии перевели на дистант из-за странной гибели 9 овец
10:25
В Бурятии могут заморозить цены на алкоголь
10:15
Женщина обманула сына и банк в Бурятии, чтобы отдать мошенникам 9 млн рублей
09:09
Гололедица и снег нагрянут в Бурятию 24 ноября
08:38

AIJ Science 2025: Российские учёные награждены за статью о новом методе обработки данных

Работа появится в спецвыпуске журнала "Доклады Российской академии наук. Математика, информатика, процессы управления"
AIJ Science 2025: Российские учёные награждены за статью о новом методе обработки данных Артём Хорошилов  , ИА Stavropol.Media
AIJ Science 2025: Российские учёные награждены за статью о новом методе обработки данных
Фото: Артём Хорошилов , ИА Stavropol.Media
Нашли опечатку?
Ctrl+Enter

На международной конференции AI Journey (18+) ("Путешествие в мир искусственного интеллекта") подведены итоги конкурса AIJ Science — отбора научных статей по новейшим исследованиям в области искусственного интеллекта и машинного обучения, сообщает пресс-служба банка. 

В 2025 году на конкурс было подано свыше 240 работ от AI-исследователей из 17 стран: России, Индии, Китая, США, Индонезии, Канады, Беларуси, Узбекистана, Южной Кореи, Саудовской Аравии, Азербайджана, Эфиопии, Кипра, Иордании, Армении, Вьетнама и Судана. Российские работы поступили из разных регионов страны — от Комсомольска-на-Амуре до Луганска. 

К публикации в специальном выпуске издания "Доклады Российской академии наук. Математика, информатика, процессы управления" и его англоязычной версии Doklady. Mathematics допущено 42 статьи. Все материалы рецензируют ведущие профильные эксперты, а статьи для публикации в издании и лучшая статья определяются авторитетной конкурсной комиссией из учёных Сбера, Института AIRI и Института системного программирования РАН.

Научная статья "MMRFiGN: ансамблевая графовая модель сегментации несбалансированных изображений высокого разрешения, информированная мультикомпонентными марковскими случайными полями" признана лучшей работой AIJ Science 2025.

"Непрерывные научные исследования крайне важны для развития прикладного искусственного интеллекта, поскольку они лежат в основе как создания новых продуктов, так и совершенствования существующих. Особенно хочется отметить растущий интерес к конкурсу не только в нашей стране, но и за рубежом: более 200 работ из 17 стран мира — это отличное подтверждение его международного признания. Работа-победитель этого года — яркий пример исследования с широкими возможностями для практического применения искусственного интеллекта в реальном мире: в сельском хозяйстве, на транспорте, в труднодоступных регионах и в сфере безопасности. Уверен, что предложенная архитектура станет серьёзным подспорьем и ценным инструментом для других учёных и разработчиков", подчеркнул старший вице-президент, руководитель блока "Технологическое развитие" Сбербанка Андрей Белевцев.

Авторы статьи изучили семантическую сегментацию изображений высокого разрешения с дисбалансом классов и предложили новый метод — ансамблевую графовую нейросетевую модель MMRFiGN, основанную на интеграции в архитектуру мультикомпонентных марковских случайных полей. Эффективность подхода продемонстрирована как теоретически (доказана возможность ускорения обучения по сравнению с сопоставимыми по размеру графовыми и свёрточными решениями), так и эмпирически (на открытых датасетах из снимков с беспилотных аппаратов MMRFiGN превосходит по точности более чем на 15% лучшую трансформерную модель 2025 года для обработки аэрокосмических изображений). При этом модель содержит почти в два раза меньше параметров, чем сопоставимые по результатам аналоги. Предложенные методы эффективны при анализе сложных сцен в автономной навигации для беспилотных систем.

234715
48
5